An Intramolecular W–H…O=C Hydrogen Bond? Electrosynthesis and X-Ray Crystallographic Structure of $[WH_3(\eta^1-OCOMe)(Ph_2PCH_2CH_2PPh_2)_2]$

S. A. Fairhurst, R. A. Henderson, D. L. Hughes, S. K. Ibrahim and C. J. Pickett*

Nitrogen Fixation Laboratory, University of Sussex, Brighton, UK BN1 9RQ

Electrochemical reduction of $[WH_2(\eta^2-OCOMe)(dppe)_2]^+$ in the presence of protons leads to the formation of $[WH_3(\eta^1-OCOMe)(dppe)_2]$: NMR and X-ray crystallographic data suggest this complex possesses an unprecedented W–H···O=C intramolecular hydrogen bond.

Controlled potential electrolysis of $[WH_2(\eta^2-OCOMe)-(dppe)_2]^+$ (dppe = $Ph_2PCH_2CH_2PPh_2$) in 0.2 mol dm⁻³ [NBu₄][BF₄]–MeCN containing one equivalent of MeCO₂H at a vitreous carbon cathode maintained at -2.1 V vs. ferrocenium–ferrocene affords bright yellow microcrystalline [WH₃(η^1 -OCCOMe)(dppe)_2] **1** in excellent yield (91%),† eqn. (1) (diphosphine ligands omitted for clarity).

¹H NMR (CD₂Cl₂; 270 MHz) revealed that the resonances of two of the three H ligands of 1 were unexceptionally centred at $\delta = -2.78$ ($^{2}J_{PH} \approx 31$ Hz) whereas that of the third occurred at a substantially lower field, $\delta 2.92$. ¹H Relaxation measurements (298 K) gave $T_1 = 255$ and 300 ms for the low and high field resonances respectively, as is consistent with the presence of classical hydride ligands. Variable-temperature ¹H NMR spectroscopy over the range -20 to +40 °C in CD₂Cl₂ and between +20 and +70 °C in (CD₃)₂SO established that the complex was stereochemically rigid with no interchange of the hydridic sites. Above 70 °C slight line broadening and decomposition occurred.

Hydrogen bonding and/or longer range dipole–dipole interactions of the hydride with carboxylate O atoms are expected to cause deshielding of hydride. Either or both would explain the occurrence of the low field hydride resonance. Solution IR spectroscopy of the trihydride showed v(C=O) at 1620 cm⁻¹ which is in the frequency range typical for η^1 -carboxylate ligands but is otherwise uninformative.

To obtain further information, an X-ray crystallographic analysis of $[WH_3(\eta^1-OCOMe)(dppe)_2]$ was undertaken.‡ A view of the structure of the trihydride is shown in Fig. 1, the three hydride ligands were located and refined satisfactorily. The W atom has dodecahedral coordination with the two chelating diphosphine ligands spanning the 'equatorial' B-sites; the hydrides and acetate occupy the A-sites.

The carboxylate ligand adopts the η^1 -coordination mode with the carbonyl oxygen sitting over one of the hydride ligands at a distance of 2.33(6) Å. This distance is shorter than the sum of the van der Waals radii of O and H (2.6 Å) and is indicative of weak hydrogen bonding. The proximity of the O and H atoms presumably accounts for the low field resonance observed in the ¹H NMR spectrum.

The normal to the acetate ligand plane lies only 13.7(4)° from the normal to the dodecahedral plane of W, P(1), P(3), O(5) and H(6), and the C(51)–C(5)–O(51)···H(6) torsion angle is $165(2)^{\circ}$. Thus the unique hydride atom, H(6), lies close to the plane encompassing conventional sp² hybridised carbonyl oxygen lone pairs. Adopting the projection of Taylor *et al.*⁴ for hydrogen bonds to carbonyl groups, as shown in Fig. 2(*a*), θ is 75° and φ in this projection is -6° .

Such angles are not at all abnormal for intramolecular hydrogen bonds. In a bivariate statistical analysis of X-ray and neutron diffraction data reported for 152 C=O…H intramolecular hydrogen-bonding systems, nearly 20% of samples lie within the confines of $70 < \theta < 90^{\circ}$ and $0 > \phi > -10^{\circ}$.⁴

Values of C=0···H $\leq 90^{\circ}$ are relatively common where intramolecular geometric restraints are operative⁴ giving rise to arrangements such as shown in Fig. 2(*b*): we suggest that the evidence presented herein is consistent with an analogous type of interaction, Fig. 2(*c*).

Finally, we note that the pendant acetate ligand, besides distinguishing one hydride from the other two, is also responsible for the unprecedented reactivity of this complex towards deuterons: deuteronation of 1 leads to selective release

Fig. 1 Crystal structure of $[WH_3(\eta^1-OCOMe)(dppe)_2]$

Fig. 2 (a) representation of C=O···H hydrogen bonding defining angles θ and ϕ according to ref. 4; (b) representation of a common intramolecular hydrogen bonding motif; (c) analogous representation for hydride 1, θ = 75° and ϕ = -6°, C=O···H 84.4(16)°, see text

of H_2 rather than to a mixture of HD, H_2 and D_2 as is unexceptionally the case with other polyhydrides.⁵

Received, 28th March 1995; Com. 5/01967B

Footnotes

† Microanalytical and spectroscopic data are fully consistent with the formulation of 1.

‡ *X-Ray crystallography*: crystal structure analysis of [WH₃(η¹-OCO-Me)(dppe)₂]-MeCN. Crystal data: C₅₄H₅₄O₂P₄W·C₂H₃N, *M* = 1083.8 monoclinic, space group *P*2₁/*c* (no. 14), *a* = 14.383(1), *b* = 16.673(2), *c* = 20.883(1) Å, β = 90.891(6)°, *U* = 5007.6 Å³, *Z* = 4, *D_c* = 1.437 g cm³, *F*(000) = 2200, μ(Mo-K\alpha) = 25.2 cm⁻¹, λ (Mo-K\alpha) = 0.71069 Å. Fine, yellow, square-prismatic needle crystals. One *ca*. 0.13 × 0.13 × 0.33 mm, mounted on a glass fibre and coated with epoxy resin examined photographically; then on CAD4 diffractometer, with monochromated radiation, for accurate cell parameters and diffraction intensity measurements (θ_{max} = 20°). Data processed with corrections for Lorentz-polarisation effects, slight crystal deterioration, absorption and to eliminate negative intensities. 4652 Unique reflections (3351 with *I* > 2 σ_I) into SHELX system⁶ for structure determination (heavy-atom method) and refinement; at convergence, *R* = 0.054, *R_g* = 0.0416 for all 4652 reflections weighted $w = (\sigma_F^2 + 0.0020F^2)^{-1}$. The three hydride ligands were found

in appropriate locations, with peak heights *ca*. 0.5–0.7 e Å⁻³ in a difference Fourier map; the other major peaks in that map, to *ca*. 0.7 e Å⁻³ were all closer to the W atom and in chemically unreasonable positions. The hydride ligands were refined independently and successfully in the diphosphine ligands, all the hydrogen atoms were included in idealised positions; the methyl H-atoms in the carboxylate were refined with geometric constraints. For all hydrogen atoms, isotropic thermal parameters were refined freely. All non-hydrogen atoms were refined anisotropically.

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Centre. See Information for Authors, Issue No. 1.

References

- I D. L. Hughes, S. K. Ibrahim, G. Querne, A. Laouenan, J. Talarmin, A. Queiros, A. Fonseca and C. J. Pickett, *Polyhedron*, 1994, 13, 3341.
- 2 G. B. Deacon and R. J. Phillips, Coord. Chem. Rev., 1980, 33, 227.
- 3 R. Taylor and O. Kennard, Acc. Chem. Res., 1984, 17, 320.
- 4 R. Taylor, O. Kennard and W. Versichel, J. Am. Chem. Soc., 1983, 105, 5761.
- 5 R. A. Henderson, S. K. Ibrahim, K. E. Oglieve and C. J. Pickett, 1995, 1571.
- 6 G. M. Sheldrick, SHELX, Program for crystal structure determination, University of Cambridge, 1976; also an extended version, SHELXN (1977).